|  | @@ -23,6 +23,7 @@ SDEGen: Learning to Evolve Molecular Conformations from Thermodynamic Noise for
 | 
											
												
													
														|  |  ### 自动化计算核磁共振化学位移
 |  |  ### 自动化计算核磁共振化学位移
 | 
											
												
													
														|  |  - An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions 小分子的化学位移预测 
 |  |  - An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions 小分子的化学位移预测 
 | 
											
												
													
														|  |  - Elucidating Structures of Complex Organic Compounds Using a Machine Learning Model Based on the 13C NMR Chemical Shifts 这一篇也不错,https://github.com/fenglb/SVM-M
 |  |  - Elucidating Structures of Complex Organic Compounds Using a Machine Learning Model Based on the 13C NMR Chemical Shifts 这一篇也不错,https://github.com/fenglb/SVM-M
 | 
											
												
													
														|  | 
 |  | +- AI预测化学位移的方法:Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions, CASCADE,Real-time prediction of 1H and 13C chemical shifts with DFT accuracy using a 3D graph neural network
 | 
											
												
													
														|  |  
 |  |  
 | 
											
												
													
														|  |  ### 量化自动化计算核磁共振全谱
 |  |  ### 量化自动化计算核磁共振全谱
 | 
											
												
													
														|  |  
 |  |  
 |